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Protein-folding via numerical optimization

Working assumption:
The “natural” conformation of a protein corresponds to
a configuration that minimizes an energy potential.

This premise brings the protein-folding problem into the
realm of numerical optimization algorithms (e.g. LBFGS)

Compute an X" that minimizes E(X),
where X is the vector of atom coordinates,
and E is a potential energy function (e.g. Amber).

This is a challenging problem:
* Potential function E is only a model.
« Large-scale problem (size 103--10°)
* Many local minima.
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Two observations

* atoms move in
clusters.

large displacements
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Observation:
* Atoms appear to move slowly and in small clusters during

numerical minimization process.

Idea: To “optimize” these clusters in parallel, keeping the other
atoms fixed. Is is possible?

Questions:

* How to define clusters -- i.e. how to divide the atoms ?

* What’s the right energy function wrt these atoms.




Defining E w.r.t. a subset of “active atoms”

E(A;X) = Sum of all energy terms in E(X)
that involve at least one atom in A

Array of A : active atoms =

positions  X:

Basic “Divide and conquer” (parallel) optimization approach:

1. Distribute atoms among P processors:
Subset A, is active on P;

2. In parallel, each P, minimizes A, using E; = E(A,; ; X)

3. Combine the results of each P,.
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Basic “Divide and conquer” (parallel) optimization approach:

“Divide and conquer” (parallel) optimization with
global updates:

1. Distribute atoms among P processors:
Subset A, is active on P;

2. In parallel, each P; lowers the energy of A, (i.e. E(A;; X) by

performing a small number & of optimization iterations.

3. Combine results of each P; on each process (“all-gather”).

4. Stop upon convergence, else go to step 2 and repeat.

“Divide and conquer” (parallel) optimization with updates:

Example 1

Protein leOm
593 Atoms
Initial E > le+6
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After 50it How do energy values compare when parallel results are combined?
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Divide and conquer optimization with correction steps: .. R . .
q P P “Divide and conquer” (parallel) optimization with corrections:

1. Distribute atoms among P processors:

Subset A, is active on P; inP,
2. In parallel, each P; lowers A, using E; = E(A, ; X) by in P
performing a small number &, of optimization iterations. -
3. Combine the results of each P,. v in Py
4. Correction Step: Carry on a small number &, of optimization
iterations using on the full system E(X).
in P

5. Stop upon convergence, else go to step 2 and repeat.

1500it

Results on 1eOm (same protein as before)
using k=30, k,=3:
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A caveat:

In parallel step, time of per iteration is reduced,

but (total) energy drop per iteration is also lowered.

Q: can we balance these two effects and get
significant reduction in time for a given energy
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Configuration@ E=-6000 Conclusions:

* A parallel divide-and-conquer scheme with global corrections
can significantly reduce the computational time required for
lowering the (Amber) energy of some protein configurations.

* A few full-size optimization corrections appear to keep the
parallel optimization in line with its serial equivalent,
even for proteins as large as 5000 atoms.

« In general, the approach has two opposites effects:
1. Reducing the time per iteration, and
2. Reducing the energy drop per iteration,
with increasing number of processors (parallel scale issue).

with P=128

Improvements & future work:
* More testing! (results are preliminary --only a few examples)

* Grouping atoms according to structure (by amino, or per coils,
alpha-helix, or beta sheets) --should improve parallel E reduction.

* Using clusters of “active atoms” (e.g. using ligradientll)
--motivating idea. END

* Partitioning protein by spatial location --some proteins come in
multiple “lumps” of atoms.

¢ Developing better strategy for setting the parameters k, k,
(possibly adapting these during optimization).




